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Abstract

Green energy usage in Morocco is gaining traction, particularly in the realm of solar panels, which hold great potentia for use in
agriculture and residential settings. Recently, there has been growing interest in exploring ways to automatically gather important
information about solar installations in specific geographic areas of interest. To address this goal, we devel oped ageoAl approach that
utilizes satellite high-resolution imagery and the YOLOv8 computer vision algorithm for accurate solar panel segmentation in the
Marrakech-Safi region of Morocco. Training images were obtained from open-source, annotated datasets available on the web, and we
pseudo-labeled images from our Area of Interest using a semi-supervised learning approach. We built, trained, and tested the solar
panel dataset, which included 4660 images. Subsequently, we performed geoprocessing analysis to extract estimated geometric
parameters such as the area, perimeter, and angles of the segmented solar panels. These shape parameters were then employed in
unsupervised machinelearning to detect anomaliesin the segmented data by using the I solation Forest algorithm. Precision, recall rate,
and mAP50 were used for the evaluation of the Yolov8 segmentation model. The results showed a high precision rate of 96.9%, a
recal rate of 97.6%, and an mAP score of 0.99, indicating the effectiveness of the Yolov8 segmentations in accurately segmenting
solar panels. Our approach successfully segmented 18,050 PV modules, covering an estimated area of 1.47 km2 in the study area, with
an average confidence of 89%. This demonstrates the model's capability to accurately identify and isolate solar panels within complex
scenes. The high precision and recall rates suggest that our approach isrobust for large-scal e solar panel detection in diverselandscapes.
Successfully segmenting over 18,000 PV modules indicates the scalability of our method. Additionally, integrating geoprocessing
analysis and the Isolation Forest agorithm enhances our approach, alowing for the identification of anomalies in solar panel
installations. This research provides valuable insights into the extent of solar panel adoption in the Marrakech-Safi region, offers a
robust methodology for large-scale solar installation mapping, and establishes a foundation for future nationwide studies, potentially
informing energy policies and supporting sustainable devel opment initiatives across M orocco.

satellite imagery. Severa studies have explored this approach,
demonstrating promising results. For instance, Malof et d.
(2015) and Hong et al. (2017) utilized computer vision
techniques to detect solar PV systems from remote sensing data.
Additionally, Qi Li et al. (2023) results indicate that their
SolarDetector, employing the Mask R-CNN algorithm, achieved

1. Introduction

In Morocco, there have been alot moreinstallations of residential
and agricultural systems over the past ten years. The generated

energy of solar PV systems, which was only 63 GWh in 2014,
significantly increased and reached 1547 GWh in 2020 and 1848
GWh in 2021. According to the International Energy Agency,
Morocco's renewable energy capacity will increase to reach
3,000 MW in 2025 (IEA, 2016). It isimportant to note that over
the forecast period, solar PV systemswill account for 14% of the
nation's growth in renewable energy (Hochberg, M. 2018).
Government organizations are keen on obtaining accurate
information about the location, size, and energy generation of
existing solar PV installations. This datais vital for tracking the
overall growth of solar systems in a particular area and making
important decisions, including energy demand forecasts,
development planning, distribution upgrades, and ensuring a
reliable and resilient power grid. Formal data collection
techniques, like surveys, take along time and don't offer enough
accuracy. Additionaly, the rapid growth of residentia and
agricultural PV systems makes these techniques obsolete and
necessitates ongoing, costly data collection efforts.

Computer vision algorithms and convolutional neura networks
have shown great potential for detecting solar panels using
remote sensing data. These algorithms can precisely identify and
locate solar PV installations by examining high-resolution

superior performance in accurately detecting rooftop solar arrays
and providing detailed installation information, outperforming
the notable approach of (Q. Li et a., 2020) by approximately
50%.

In the present paper, we suggest the employment of the Yolov8
segmentation model (Ultralytics, 2023), the newest deep-
learning architecture from the YOLO series of frameworks
(Terven, 2023). Y OLO models have been widely used in remote
sensing, such asin studies by Cheng et a. (2021), Alganci et al.
(2020), Zheng et a. (2022), and C. Yu et a. (2023), and have
made significant progress in object detection and segmentation.
The YOLO family of object detection models has been renowned
for its emphasis on striking the perfect balance between speed
and accuracy, ensuring real-time performance without
compromising on detection quality. Building upon the successes
of its predecessors, the YOLOv8 model further elevates speed
and accuracy, offering a unified framework for training models
optimized to instance segmentation tasks (Ultralytics, 2023).
Consequently, our decision to opt for YOLOv8 was clear and
strategic, as we sought the ideal trade-off between high accuracy
and speed. This choice is particularly crucia for us, given our
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intention to utilize the model for prediction on avery large study
area.

Remote sensing is aresearch areathat requires high computation
capabilities and combining it with deep learning algorithms
makes the task even more demanding. Thus, many researchers
havetried applying Y olov8 models to make use of its advantages
in solving this problem. Ma and Pang (2023) proposed an
enhanced method based on YOLOv8s. This method focuses on
accurately recognizing tiny objects in remote sensing images by
replacing the strided convolution module in Y OLOv8s with the
SPD-Conv module. In another study by Adegun et al. (2023),
Yolov8 and other R-CNN algorithms were compared to detect
vegetation and swimming pools in high-resolution satellite
images. The results showed that Y olov8 outperformed the other
methods in terms of both accuracy and speed of detection. Hajjgji
et al. (2023) successfully applied Yolov8 for early detection of
The Red Palm Weevil using UAV images. Their model achieved
remarkable results, boasting 100% precision and recall in
detecting and pinpointing infested palm trees. In summary,
Y olov8 has shown promising potential in various remote sensing
applications, offering improved accuracy and efficiency

Many studies have focused on identifying solar PV locations
worldwide, but there hasn't been any research done specifically
for Morocco. Our study aims to address this gap by using the
Yolov8 agorithm with high-resolution satellite images to
precisely locate and segment solar PV installations in Morocco.
This research will not only enhance our understanding of solar
energy distribution in the country but also offer valuable insights
for future renewable energy planning and development. To
improve segmentation accuracy despite limited training samples
and computational resources, we propose a geoAi approach that
combines geospatial analysis and computer vision techniques.
The primary objectives of this research are as follows:

1. Segmentation of PV panels and identification of their
locationsin georeferenced satellite imagery

2. Extract geometric parameters such as area, perimeter,
and angles of the identified PV panels for further
analysis and mapping purposes.

3. Using the isolation forest agorithm, perform
unsupervised machine learning to use extracted shape
parameters to identify anomalies and outliers in the

compared to other algorithms. results.
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Figure 1: The methodological framework of the research.
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2. Material and Methods

2.1. Study Area

This study focuses on Morocco's Marrakech-Safi  region,
bordered by Casablanca-Settat, Beni Mélla-Khenifra, Draa
Tafilaet, and Souss-Massa regions, along with the Atlantic
Ocean. Covering 39,167 kmz, it holds 115 people per sgq km. With
an arid climate, temperatures range from 4.9°C to 37.7°C.
Notably, Marrakech-Safi boasts high direct normal irradiance
(DNI) up to 3000 kWh m-2 year-1, idea for solar PV
installations.
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2.2 Land Exclusion

Given the extensive expanse covered by the region (figure 2), a
vital measure involved excluding land areas with a significant
likelihood of lacking any photovoltaic (PV) installations. To
achieve this, we leaned on the Dynamic World V1 dataset from
2022 (Brown et a., 2022), which furnished comprehensive
insights into global land use and cover. This dataset facilitated
precise identification of regions with minima potentia for
housing PV instalations. These specific regions were
demarcated by distinct bands: shrub and scrub, bare land, snow
and ice, aswell aswater bodies.
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Figure 2: Study area and excluded areas highlighted.

2.3 Dataset preparation

The use of PV modules is aready an established sector in
agricultural and residential areas in Morocco (source). However,
there is no open-source dataset of thelocation of PV installations
in the country available to use astraining samples. Therefore, we
relied on open-source datasets of annotated solar panels in
Satellite images available on Roboflow and Kaggle. In addition,
we located a small number of PV installations in our AOI and
annotated it manually. This web dataset obviously does not
represent our AOI. Our goal is to use semi-supervised learning
by training a Yolov8 segmentation model with the previously
stated training set of data. to build a trained and tested pseudo-
annotated dataset from the AOI.

Following this method, we collected high-resolution satellite
imagery (0.2 m per pixel) and geospatia data (figure 3). We
randomly selected samples of images from all provinces of
Marrkech-Safi. Our dataset contains 4660 high-resolution
pseudo-annotated images with (512 x 512) pixels and one or

more agricultural or residential PV panels in each tile. Images
and their annotations were split into training, validation, and test
sets, with 80%, 10%, and 10% samples in each set (see table 1).

Overview Description
Number of images 4660
Image resolution 512 x 512
Spatial resolution 0.2-05m

Type of use Solar panel segmentation

Data split 811

Table 1: Photovoltaic satellite image dataset.
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2.4 Segmentation model
2.4.1YOLO dgorithm

Joseph Redmon and Ali Farhadi created the Y ou Only Look Once
(Yolo) object detection and image segmentation model at the
University of Washington. Since the initial release of Yolo
[joseeph] in 2015, changes have been made to the architecture
and cost functions to increase its precision and efficiency. Yolo
involves partitioning an image into agrid of smaller regions and
subsequently making predictions for bounding boxes and class
probabilities for each object detected within those regions.

2.4.2 Y OLOV8 Segmentation model

Ultralytics, the company behind Y OLOV5, launched Y OLOv8.
This latest release introduced five different scaled versions:
YOLOvV8n (nano), YOLOvV8s (small), YOLOv8m (medium),
YOLOVS8I (large), and Y OLOv8x (extralarge). Y OLOv8 boasts
extensive capabilities, supporting various vision tasks like object
detection, segmentation, pose estimation, tracking, and
classification.

YOLOV8 adopts an anchor-free model featuring a decoupled
head, which efficiently handles objectness, classification, and
regression tasks as separate branches. This strategic design
enables each branch to concentrate solely on its designated task,
leading to enhanced overall model accuracy. In the output layer
of YOLOVS8, the activation functions chosen are significant for
their respective purposes. The sigmoid function is utilized for the
objectness score, indicating the likelihood that a bounding box
contains an object. On the other hand, the softmax function is
applied to the class probabilities, representing the likelihood of

objects belonging to each potential class.

: X ’ ‘)'

Figure 3: Examples of collected data In Marrakech-safi region

YOLOvV8 offers a semantic segmentation model called the
YOLOv8-seg model. The backbone is a CSPDarknet53 feature
extractor, followed by a C2f module instead of the traditional
YOLO neck architecture. The C2f module is followed by two
semantic segmentation heads, which learn to predict the semantic
segmentation masks for the input image. The model has similar
detection headsto Y OLOv8, consisting of five detection modules
and a prediction layer. The YOLOvV8-Seg model utilizes a
Deconvolution module to upscale the feature maps, aigning
them with the size of the input image. The resulting output from
the Deconvolution module is then processed by a Softmax layer,
generating a probability distribution that corresponds to the
semantic |abels of theinput image. The model has achieved state-
of-the-art results on various object detection and semantic
segmentation benchmarks while maintaining high speed and
efficiency.

In this study, as summarized in Table 2 , we employed the
YOLOv8m-seg medium model to detect and segment the PV
panels in high-resolution satellite images. a model with a size of
27.3m parameters. A pretrained model Y olov8m-seg.pt, was
used for fine tuning. running on a T4 GPU provided by the
Kaggle platform, for the optimizer choice In the YOLOv8
codebase, a deliberate optimization strategy is employed during
training. The optimizer AdamW is initially utilized for the first
10,000 iterations, which aids in achieving faster convergence,
particularly during the early training stages. However, after this
initial phase, the optimizer is switched to SGD for the remaining
iterations. This change is based on the observation that
employing SGD for fine-tuning after a certain point can lead to
improved overall performance(Ultralytics, 2023). Thetraining of
the Model spanned 120 epochs, employing a learning rate
schedule that started with 1r0=0.01 and linearly decreased with
each epoch until it reached Irf=0.01 at the end of training. This
approach ensures appropriate scaling over large batches,
promoting effective model convergence while using a batch size
of 24. In YOLOVS, severa augmentations are applied during the
training process by default with a probability of 0.01. These
augmentations include Blur, MedianBlur, ToGray, and CLAHE.
Additionaly, YOLOv8 makes use of the mosaic augmentation
technique, which combines four images into a single composite.
This mosaic augmentation not only enhances the variation in the
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training data but aso effectively addresses the issue of
overfitting, contributing to amore robust and accurate model.

Configurations and hyperparameters Description
Segmentation model YOLOv8m-seg
Backbone CSPDarknet53
pre-trained weights COCO02017

Number of classes

2 (solar panel, background)

Input image size

512 x 512

Augmentation methods

Horizonta flip, shift scale rotate.

Optimizer Adamw, SGD
Batch size 24

Number of epochs 120

GPU T4

Table 2. Configuration and hyperparameters specifications of yolov8.
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Figure 4: Brief summary of YOLOv8 model structure(Ultralytics, 2023)
2.5. Performance evaluation
In YOLOv8-seg, a combined loss function is employed, Recall TP
: : . : ecall = ————
incorporating three key components. bounding box loss, TP + FN

objectness loss, and segmentation loss. This integrated
approach alows the model to efficiently perform both object
detection and semantic segmentation tasks simultaneously.
The loss calculation involves classification and regression
branches, with the classification branch utilizing BCE Loss
and the regression branch using a combination of DFL and
CloU Loss. The specific choice of loss functionsis influenced -
by factors such as the task's nature and the model's
configuration. While BCE, DFL, and CloU loss functions are
commonly used, they can be automaticaly adapted or
substituted based on the problem. The following performance
metrics are also used to evaluate accuracy. -

Where:

TP: True positive
FN: false negativce
FP: false positive

mAP50: mAP50 denotes the mean Average
Precision at an 1oU threshold of 0.50, which assesses
the model's segmentation performance (intersection
over union) for moderate alignment with ground
truth bounding boxes and mask.

Intersection-over-Union (IoU), aternatively known
as the Jaccard Index, is computed by dividing the

Precision: Precision measures the proportion of
positively predicted samples that truly belong to the
positive class (Olson David and Delen, 2008).

TP
TP + FP
Recall: Recall quantifies the proportion of positive
examples in the dataset that are correctly predicted
as positive class (Olson David and Delen, 2008).

Precision =

shared area between the predicted segmentation and
the ground truth by the combined area of the two

(Tahaand Hanbury, 2015).
ol TP
Y =TPYFP+FN

2.6 Geospatial processing and analysis
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Solar PV segmentation was accomplished through
computer vision techniques. To leverage the outcomes,
Geographic Information Systems (GIS) played a crucial
role. We executed a sequence of geospatial processes to
properly georeference and reclassify the generated
masks. Subsequently, we converted them into polygons.
These procedures enable us to conduct a variety of
additional geospatia analyses with the segmented solar
PV data. Georeferencing masks utilized the Rasterio
(2013) library. Spatial metadata was transferred from the
original 512x512 tile to its corresponding mask.
Reclassification in Rasterio assigned no data to zero-
value pixels. This enabled accurate polygonization of PV
masks using the Shapely library, extracting valid shapes
from the raster as vector polygons. Additionaly, QGIS
was employed to simplify polygon geometry by reducing
vertex count through the Dougl as-Peucker algorithm (Wu
& Mérquez, 2004). This process led to an improved PV
data representation; wereprojected vector polygonsto the
local Coordinate Reference System (ESPG:26191). to
ensure precise calculations of area and perimeter using
QGIS. We made use of GeoPandas for spatial joins,
assigning attribute data for provinces and communes to
each polygon.

2.7 Anomaly detection

We employed the I solation Forest (iForest) algorithm (F.
Liuetal., 2008), arobust unsupervised learning technique
explicitly designed to isolate anomalies within our
results. This agorithm excels at identifying and
highlighting unusual data points by isolating them from
therest of the dataset. In our analysis, we focused on solar
panel polygons, utilizing their area and perimeter as
essential parameters. To enhance the precision of our
anomaly detection, we set an anomaly contamination rate
of 0.05, enabling us to pinpoint potentia irregularities
with greater precision.
The anomaly score s of an instance x is defined as:
_E(h(x)))

S(x,n)=2 <m)
where h(x) isthe path length and E(h(x)) isthe average of
h(x) from a collection of isolation trees, c(n) is the
average of h(x) given n
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Figure 5: Visudization of evaluation metrics of the

segmentation model

3. Reaults

3.1 Segmentation model results

The research employed the YOLOv8m-seg model for
performing image segmentation. This model not only
generated mask predictions but also provided bounding
box predictions. The dataset employed in this study
encompassed two  distinct classes, namely PV (Positive
Viable) and background. The training outcomes
demonstrated the model's strong performance, as evidenced
by a notable mask precision value of 0.97 and an impressive
mean Average Precision at loU 50 (mAP50) score of 99.1,
(seefigure5).

Figure 6: evolution of evaluation metrics across all epochs.

In the evaluation of loss metrics within Y OLOVS, variousloss
functions were employed, including segmentation loss (seg-
loss), bounding box loss (box-loss), class loss (cls-loss), and
dfl-loss. Among these, the lowest |oss value was observed for
the class loss (cls-loss), recording at 0.18. Thisresult signifies
the model's accurate localization of PV installations. The
bounding box loss (box-l10ss) and segmentation loss (seg-10ss)
exhibited dlightly higher values of 0.36 and 0.46, respectively.
Nonethel ess, these values remained within an acceptable range
and did not significantly impact the overall model performance
(see Figure 6).

(figure 11) compares manually annotated polygons. three
examples from the test set with corresponding original images,
prediction, simplified, and ground truth polygons are shown.

Figure 7: evaluation metrics across range of tresholds.

Throughout the training process, the model employs arange of
confidence thresholds spanning from 0 to 1. For each
individual threshold, the model computes both precision and
recall metrics. Figure 7 illustrates that the model is capable of
attaining high levels of precision and recall across a diverse
range of confidence thresholds.
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Figure 8: number of segmented PV modules across all provinces of the region.

Figure 9: Sum of photovoltaic area by province.

3.2 Geospatial analysis:

Through the implementation of spatial intersection methods,
we have effectively linked photovoltaic (PV) installations to
their respective provinces, as demonstrated in Figure 8.
Notably, EL KELAA DES SRAGHNA exhibits the most
substantial count of PV installations, totaling 4763, followed
by another notable count of 3996 in the Marrakech province.
Conversely, Youssofia records the lowest count of
installations at 374. The usage of PV ingtalations differs
acrossregions. In EL KELAA DES SRAGHNA, amajority of
the PV ingtalations are employed within the agricultural
sector. On the other hand, in the Marrakech region, PV

installations find application in both agricultural and
residential settings.

The polygons representing the PV instalations were
transformed to a gpecific loca coordinate system
(EPSG:26191). This was done to ensure precise calculations
of both the area and perimeter for each installation. As
depicted in Figure 9, the combined calculated areas for all
installations across different provinces were visuaized. As
anticipated, EL KELAA DES SRAGHNA showcased the
largest total area, measuring 0.34 square kilometers. Following
closely, Marrakech exhibited an area sum of 0.29 sguare
kilometers. The provinces of AlHouaz, Rehamna, and
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Chichaoua demonstrated slightly similar values, with areas of
0.19, 0.17, and 0.16 sguare kilometers respectively.

Figure 10: Kernel distribution estimates of PV attributes.

The distribution of estimated parameters is depicted in Figure
10. Notably, perimeter values exhibited their highest density
at approximately 50 meters. Similarly, the densities of area
values fell within the range of 20 to 150 square meters, with
the peak occurring in this interval. The distribution of the
number of angles in photovoltaic (PV) installations displayed
an equitable spread between four and five angles. Furthermore,
confidence levels were recorded, with the maximum density
observed at approximately 0.9.

Area-Perimeter Scatter Plot with Highlighted PV Installation Outliers
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Figure 11: representation of outliers based on area and
perimeter.

3.3 Anomaly estimation

Implementing the isolation forest agorithm, we identified
outliers within our dataset by considering the attributes of area
and perimeter. As shown in Figure 11, a scatter plot was
generated to emphasize the data points constituting 5% as
outliers. Evidently, the plot revealsthe presence of two distinct
clustersof outliers, both of which deviate from the overarching
data pattern. The first cluster is characterized by notably
smaller area and perimeter values, hovering around 10-20
units. Meanwhile, the second cluster predominantly exhibits
perimeter values exceeding 100 meters and area values
predominantly exceeding 300 square meters.

3.4 Photovoltaic density across LULC classes

To identify the specific application domain of the identified
photovoltaic (PV) installations (see figure 12). We performed
sample raster values analysis, which allowed usto assign land
use and land cover (LULC) classes from the dynamic World
V1 dataset of 2022 to the segmented PV modules. In Figure
14, we can observe the distribution of PV installations across
various LUL C classes. Notably, crop areas constitute the most
dominant class, followed by built, trees, and barren land. In
contrast, the least prominent classes comprise snow-covered
areas, grassland, and water bodies.

4. Discussion

Recent studies have shown a notable improvement in using
computer vision to detect solar panels, J. Yu et a. (2018)
demonstrated one of the most accurate frameworks to map
solar panels in a country scale (USA), P. Li et a. (2021)
worked on a city scale and investigated the characteristics of
PV panel semantic-segmentation from the perspective of
computer vision. his results revea that the PV panel image
data has several specific characteristics: high class-imbalance
and non-concentrated distribution; homogeneous texture and
heterogenous color features, based on his recommendations
about Visua features of PV segmentation we successfully
mapped PV moduleswith different visual featuresfrom (color,
texture, and shape) as shown in figure 15.

Various possibilities for enhancing this domain persist.
Among the most trending fields is the prediction of potential
energy production in a specific area, incorporating system-
specific variables and real-time energy generation forecasts.
Future research will focus on evauating the technica
capacity for energy generation from the segmented surface
area of solar PV.
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Figure 12: Heatmap illustration for PV panels distribution.
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Figure 14: PV panels density for each LULC class.

5. Conclusion

The solar photovoltaic (PV) manufacturing sector has
exhibited remarkable growth and has emerged as a
significant contributor to energy generation in numerous
countries, regardless of the rising costs of raw materials.
Nevertheless, the growth of large-scale residential and
agricultural solar PV installations has introduced fresh
challenges for various stakeholders, including market
regulators and power grid operators. A prevalent issuein
this context isthelack of comprehensive recordsdetailing
the precise locations and capacities of rooftop solar PV
systems. To address this challenge, there is a mounting
interest in leveraging satellite high-resolution imagery to
automate the identification of solar PV system locations
and their associated capecities across expansive
geographical regions. This paper presents an innovative
approach for the precise georeferenced localization and
segmentation of solar panels. The outcomes of our study

demonstrate the efficacy of the Yolov8 segmentation
technique in accurately delineating PV panels from
satellite imagery.

These results signify a promising avenue for the
development of an automatic, precise, and scaable
solution for obtaining critica information regarding PV
installations, even in the presence of confusing
background surroundings. In future research projects, we
intend to refine our methodology by incorporating
system-specific factors such as tilt angle, orientation,
irradiance levels, and losses due to wiring. This refined
approach aims to facilitate the estimation of potentia
energy output in agiven area, further enhancing the utility
and relevance of solar PV technology in energy planning
and management.

Figure 15: Different visual features of segmented PVs.
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