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Abstract 
 
Green energy usage in Morocco is gaining traction, particularly in the realm of solar panels, which hold great potential for use in 
agriculture and residential settings. Recently, there has been growing interest in exploring ways to automatically gather important 
information about solar installations in specific geographic areas of interest. To address this goal, we developed a geoAI approach that 
utilizes satellite high-resolution imagery and the YOLOv8 computer vision algorithm for accurate solar panel segmentation in the 
Marrakech-Safi region of Morocco. Training images were obtained from open-source, annotated datasets available on the web, and we 
pseudo-labeled images from our Area of Interest using a semi-supervised learning approach. We built, trained, and tested the solar 
panel dataset, which included 4660 images. Subsequently, we performed geoprocessing analysis to extract estimated geometric 
parameters such as the area, perimeter, and angles of the segmented solar panels. These shape parameters were then employed in 
unsupervised machine learning to detect anomalies in the segmented data by using the Isolation Forest algorithm. Precision, recall rate, 
and mAP50 were used for the evaluation of the Yolov8 segmentation model. The results showed a high precision rate of 96.9%, a 
recall rate of 97.6%, and an mAP score of 0.99, indicating the effectiveness of the Yolov8 segmentations in accurately segmenting 
solar panels. Our approach successfully segmented 18,050 PV modules, covering an estimated area of 1.47 km2 in the study area, with 
an average confidence of 89%. This demonstrates the model's capability to accurately identify and isolate solar panels within complex 
scenes. The high precision and recall rates suggest that our approach is robust for large-scale solar panel detection in diverse landscapes. 
Successfully segmenting over 18,000 PV modules indicates the scalability of our method. Additionally, integrating geoprocessing 
analysis and the Isolation Forest algorithm enhances our approach, allowing for the identification of anomalies in solar panel 
installations. This research provides valuable insights into the extent of solar panel adoption in the Marrakech-Safi region, offers a 
robust methodology for large-scale solar installation mapping, and establishes a foundation for future nationwide studies, potentially 
informing energy policies and supporting sustainable development initiatives across Morocco. 
 
 
 

1. Introduction 

In Morocco, there have been a lot more installations of residential 
and agricultural systems over the past ten years. The generated 
energy of solar PV systems, which was only 63 GWh in 2014, 
significantly increased and reached 1547 GWh in 2020 and 1848 
GWh in 2021. According to the International Energy Agency, 
Morocco's renewable energy capacity will increase to reach 
3,000 MW in 2025 (IEA, 2016). It is important to note that over 
the forecast period, solar PV systems will account for 14% of the 
nation's growth in renewable energy (Hochberg, M. 2018). 
Government organizations are keen on obtaining accurate 
information about the location, size, and energy generation of 
existing solar PV installations. This data is vital for tracking the 
overall growth of solar systems in a particular area and making 
important decisions, including energy demand forecasts, 
development planning, distribution upgrades, and ensuring a 
reliable and resilient power grid. Formal data collection 
techniques, like surveys, take a long time and don't offer enough 
accuracy. Additionally, the rapid growth of residential and 
agricultural PV systems makes these techniques obsolete and 
necessitates ongoing, costly data collection efforts. 
 
Computer vision algorithms and convolutional neural networks 
have shown great potential for detecting solar panels using 
remote sensing data. These algorithms can precisely identify and 
locate solar PV installations by examining high-resolution 

satellite imagery. Several studies have explored this approach, 
demonstrating promising results. For instance, Malof et al. 
(2015) and Hong et al. (2017) utilized computer vision 
techniques to detect solar PV systems from remote sensing data. 
Additionally, Qi Li et al. (2023) results indicate that their 
SolarDetector, employing the Mask R-CNN algorithm, achieved 
superior performance in accurately detecting rooftop solar arrays 
and providing detailed installation information, outperforming 
the notable approach of (Q. Li et al., 2020) by approximately 
50%.  
 
In the present paper, we suggest the employment of the Yolov8 
segmentation model (Ultralytics, 2023), the newest deep-
learning architecture from the YOLO series of frameworks 
(Terven, 2023). YOLO models have been widely used in remote 
sensing, such as in studies by Cheng et al. (2021), Alganci et al. 
(2020), Zheng et al. (2022), and C. Yu et al. (2023), and have 
made significant progress in object detection and segmentation. 
The YOLO family of object detection models has been renowned 
for its emphasis on striking the perfect balance between speed 
and accuracy, ensuring real-time performance without 
compromising on detection quality. Building upon the successes 
of its predecessors, the YOLOv8 model further elevates speed 
and accuracy, offering a unified framework for training models 
optimized to instance segmentation tasks (Ultralytics, 2023). 
Consequently, our decision to opt for YOLOv8 was clear and 
strategic, as we sought the ideal trade-off between high accuracy 
and speed. This choice is particularly crucial for us, given our 
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intention to utilize the model for prediction on a very large study 
area. 
Remote sensing is a research area that requires high computation 
capabilities and combining it with deep learning algorithms 
makes the task even more demanding. Thus, many researchers 
have tried applying Yolov8 models to make use of its advantages 
in solving this problem. Ma and Pang (2023) proposed an 
enhanced method based on YOLOv8s. This method focuses on 
accurately recognizing tiny objects in remote sensing images by 
replacing the strided convolution module in YOLOv8s with the 
SPD-Conv module. In another study by Adegun et al. (2023), 
Yolov8 and other R-CNN algorithms were compared to detect 
vegetation and swimming pools in high-resolution satellite 
images. The results showed that Yolov8 outperformed the other 
methods in terms of both accuracy and speed of detection. Hajjaji 
et al. (2023) successfully applied Yolov8 for early detection of 
The Red Palm Weevil using UAV images. Their model achieved 
remarkable results, boasting 100% precision and recall in 
detecting and pinpointing infested palm trees. In summary, 
Yolov8 has shown promising potential in various remote sensing 
applications, offering improved accuracy and efficiency 
compared to other algorithms. 
 

Many studies have focused on identifying solar PV locations 
worldwide, but there hasn't been any research done specifically 
for Morocco. Our study aims to address this gap by using the 
Yolov8 algorithm with high-resolution satellite images to 
precisely locate and segment solar PV installations in Morocco. 
This research will not only enhance our understanding of solar 
energy distribution in the country but also offer valuable insights 
for future renewable energy planning and development. To 
improve segmentation accuracy despite limited training samples 
and computational resources, we propose a geoAi approach that 
combines geospatial analysis and computer vision techniques. 
The primary objectives of this research are as follows: 
 

1. Segmentation of PV panels and identification of their 
locations in georeferenced satellite imagery 

2. Extract geometric parameters such as area, perimeter, 
and angles of the identified PV panels for further 
analysis and mapping purposes. 

3. Using the isolation forest algorithm, perform 
unsupervised machine learning to use extracted shape 
parameters to identify anomalies and outliers in the 
results. 

 
 

 

Figure 1: The methodological framework of the research. 
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2. Material and Methods

2.1. Study Area 

This study focuses on Morocco's Marrakech-Safi region, 
bordered by Casablanca-Settat, Beni Mellal-Khenifra, Drâa-
Tafilalet, and Souss-Massa regions, along with the Atlantic 
Ocean. Covering 39,167 km², it holds 115 people per sq km. With 
an arid climate, temperatures range from 4.9°C to 37.7°C. 
Notably, Marrakech-Safi boasts high direct normal irradiance 
(DNI) up to 3000 kWh m-2 year-1, ideal for solar PV 
installations. 

2.2 Land Exclusion 

Given the extensive expanse covered by the region (figure 2), a 
vital measure involved excluding land areas with a significant 
likelihood of lacking any photovoltaic (PV) installations. To 
achieve this, we leaned on the Dynamic World V1 dataset from 
2022 (Brown et al., 2022), which furnished comprehensive 
insights into global land use and cover. This dataset facilitated 
precise identification of regions with minimal potential for 
housing PV installations. These specific regions were 
demarcated by distinct bands: shrub and scrub, bare land, snow 
and ice, as well as water bodies. 

Figure 2: Study area and excluded areas highlighted. 

2.3 Dataset preparation 

The use of PV modules is already an established sector in 
agricultural and residential areas in Morocco (source). However, 
there is no open-source dataset of the location of PV installations 
in the country available to use as training samples. Therefore, we 
relied on open-source datasets of annotated solar panels in 
Satellite images available on Roboflow and Kaggle. In addition, 
we located a small number of PV installations in our AOI and 
annotated it manually. This web dataset obviously does not 
represent our AOI. Our goal is to use semi-supervised learning 
by training a Yolov8 segmentation model with the previously 
stated training set of data. to build a trained and tested pseudo-
annotated dataset from the AOI. 

Following this method, we collected high-resolution satellite 
imagery (0.2 m per pixel) and geospatial data (figure 3). We 
randomly selected samples of images from all provinces of 
Marrkech-Safi. Our dataset contains 4660 high-resolution 
pseudo-annotated images with (512 x 512) pixels and one or 

more agricultural or residential PV panels in each tile. Images 
and their annotations were split into training, validation, and test 
sets, with 80%, 10%, and 10% samples in each set (see table 1). 

Overview Description 

Number of images 4660 

Image resolution 512 x 512 

Spatial resolution 0.2 - 0.5 m 

Type of use Solar panel segmentation 

Data split 8:1:1 

Table 1: Photovoltaic satellite image dataset. 
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Figure 3: Examples of collected data In Marrakech-safi region 

2.4 Segmentation model 

2.4.1 YOLO algorithm 

Joseph Redmon and Ali Farhadi created the You Only Look Once 
(Yolo) object detection and image segmentation model at the 
University of Washington. Since the initial release of Yolo 
[joseeph] in 2015, changes have been made to the architecture 
and cost functions to increase its precision and efficiency. Yolo 
involves partitioning an image into a grid of smaller regions and 
subsequently making predictions for bounding boxes and class 
probabilities for each object detected within those regions. 

2.4.2 YOLOv8 Segmentation model 

Ultralytics, the company behind YOLOv5, launched YOLOv8. 
This latest release introduced five different scaled versions: 
YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium), 
YOLOv8l (large), and YOLOv8x (extra large). YOLOv8 boasts 
extensive capabilities, supporting various vision tasks like object 
detection, segmentation, pose estimation, tracking, and 
classification. 

YOLOv8 adopts an anchor-free model featuring a decoupled 

head, which efficiently handles objectness, classification, and 

regression tasks as separate branches. This strategic design 

enables each branch to concentrate solely on its designated task, 

leading to enhanced overall model accuracy. In the output layer 

of YOLOv8, the activation functions chosen are significant for 

their respective purposes. The sigmoid function is utilized for the 

objectness score, indicating the likelihood that a bounding box 

contains an object. On the other hand, the softmax function is 

applied to the class probabilities, representing the likelihood of 

objects belonging to each potential class. 

YOLOv8 offers a semantic segmentation model called the 
YOLOv8-seg model. The backbone is a CSPDarknet53 feature 
extractor, followed by a C2f module instead of the traditional 
YOLO neck architecture. The C2f module is followed by two 
semantic segmentation heads, which learn to predict the semantic 
segmentation masks for the input image. The model has similar 
detection heads to YOLOv8, consisting of five detection modules 
and a prediction layer. The YOLOv8-Seg model utilizes a 
Deconvolution module to upscale the feature maps, aligning 
them with the size of the input image. The resulting output from 
the Deconvolution module is then processed by a Softmax layer, 
generating a probability distribution that corresponds to the 
semantic labels of the input image. The model has achieved state-
of-the-art results on various object detection and semantic 
segmentation benchmarks while maintaining high speed and 
efficiency. 

In this study, as summarized in Table 2 , we employed the 
YOLOv8m-seg medium model to detect and segment the PV 
panels in high-resolution satellite images. a model with a size of 
27.3m parameters. A pretrained model Yolov8m-seg.pt, was 
used for fine tuning. running on a T4 GPU provided by the 
Kaggle platform, for the optimizer choice In the YOLOv8 
codebase, a deliberate optimization strategy is employed during 
training. The optimizer AdamW is initially utilized for the first 
10,000 iterations, which aids in achieving faster convergence, 
particularly during the early training stages. However, after this 
initial phase, the optimizer is switched to SGD for the remaining 
iterations. This change is based on the observation that 
employing SGD for fine-tuning after a certain point can lead to 
improved overall performance(Ultralytics, 2023). The training of 
the Model spanned 120 epochs, employing a learning rate 
schedule that started with lr0=0.01 and linearly decreased with 
each epoch until it reached lrf=0.01 at the end of training. This 
approach ensures appropriate scaling over large batches, 
promoting effective model convergence while using a batch size 
of 24. In YOLOv8, several augmentations are applied during the 
training process by default with a probability of 0.01. These 
augmentations include Blur, MedianBlur, ToGray, and CLAHE. 
Additionally, YOLOv8 makes use of the mosaic augmentation 
technique, which combines four images into a single composite. 
This mosaic augmentation not only enhances the variation in the 
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training data but also effectively addresses the issue of 
overfitting, contributing to a more robust and accurate model. 

Configurations and hyperparameters Description 

Segmentation model YOLOv8m-seg 

Backbone CSPDarknet53 

pre-trained weights COCO2017 

Number of classes 2 (solar panel, background) 

Input image size 512 x 512 

Augmentation methods Horizontal flip, shift scale rotate. 

Optimizer Adamw, SGD 

Batch size 24 

Number of epochs 120 

GPU T4 

Table 2. Configuration and hyperparameters specifications of yolov8. 
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Figure 4: Brief summary of YOLOv8 model structure(Ultralytics, 2023) 

2.5. Performance evaluation 

In YOLOv8-seg, a combined loss function is employed, 
incorporating three key components: bounding box loss, 
objectness loss, and segmentation loss. This integrated 
approach allows the model to efficiently perform both object 
detection and semantic segmentation tasks simultaneously. 
The loss calculation involves classification and regression 
branches, with the classification branch utilizing BCE Loss 
and the regression branch using a combination of DFL and 
CIoU Loss. The specific choice of loss functions is influenced 
by factors such as the task's nature and the model's 
configuration. While BCE, DFL, and CIoU loss functions are 
commonly used, they can be automatically adapted or 
substituted based on the problem. The following performance 
metrics are also used to evaluate accuracy. 

- Precision: Precision measures the proportion of
positively predicted samples that truly belong to the
positive class (Olson David and Delen, 2008).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
- Recall: Recall quantifies the proportion of positive

examples in the dataset that are correctly predicted
as positive class (Olson David and Delen, 2008).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Where: 
TP: True positive 
FN: false negativce 
FP: false positive 

- mAP50: mAP50 denotes the mean Average
Precision at an IoU threshold of 0.50, which assesses
the model's segmentation performance (intersection
over union) for moderate alignment with ground
truth bounding boxes and mask.

- Intersection-over-Union (IoU), alternatively known
as the Jaccard Index, is computed by dividing the
shared area between the predicted segmentation and
the ground truth by the combined area of the two
(Taha and Hanbury, 2015).

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
2.6 Geospatial processing and analysis 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025 
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-317-2026 | © Author(s) 2026. CC BY 4.0 License. 322



Solar PV segmentation was accomplished through 
computer vision techniques. To leverage the outcomes, 
Geographic Information Systems (GIS) played a crucial 
role. We executed a sequence of geospatial processes to 
properly georeference and reclassify the generated 
masks. Subsequently, we converted them into polygons. 
These procedures enable us to conduct a variety of 
additional geospatial analyses with the segmented solar 
PV data. Georeferencing masks utilized the Rasterio 
(2013) library. Spatial metadata was transferred from the 
original 512x512 tile to its corresponding mask. 
Reclassification in Rasterio assigned no data to zero-
value pixels. This enabled accurate polygonization of PV 
masks using the Shapely library, extracting valid shapes 
from the raster as vector polygons. Additionally, QGIS 
was employed to simplify polygon geometry by reducing 
vertex count through the Douglas-Peucker algorithm (Wu 
& Márquez, 2004). This process led to an improved PV 
data representation; we reprojected vector polygons to the 
local Coordinate Reference System (ESPG:26191). to 
ensure precise calculations of area and perimeter using 
QGIS. We made use of GeoPandas for spatial joins, 
assigning attribute data for provinces and communes to 
each polygon. 

2.7 Anomaly detection 

We employed the Isolation Forest (iForest) algorithm (F. 
Liu et al., 2008), a robust unsupervised learning technique 
explicitly designed to isolate anomalies within our 
results. This algorithm excels at identifying and 
highlighting unusual data points by isolating them from 
the rest of the dataset. In our analysis, we focused on solar 
panel polygons, utilizing their area and perimeter as 
essential parameters. To enhance the precision of our 
anomaly detection, we set an anomaly contamination rate 
of 0.05, enabling us to pinpoint potential irregularities 
with greater precision. 
The anomaly score s of an instance x is defined as: 

𝑆(𝑥, 𝑛) = 2
−
𝐸(ℎ(𝑥)))
𝑐(𝑛)

where h(x) is the path length and E(h(x)) is the average of 
h(x) from a collection of isolation trees,  c(n) is the 
average of h(x) given n 

Figure 5: Visualization of evaluation metrics of the 

segmentation model 

 3. Results

3.1 Segmentation model results 

The research employed the YOLOv8m-seg model for 
performing image segmentation. This model not only 
generated mask predictions but also provided bounding 
box predictions. The dataset employed in this study 
encompassed two distinct classes, namely PV (Positive 
Viable) and background. The training outcomes 
demonstrated the model's strong performance, as evidenced 
by a notable mask precision value of 0.97 and an impressive 
mean Average Precision at IoU 50 (mAP50) score of 99.1, 
(see figure 5). 

Figure 6: evolution of evaluation metrics across all epochs. 

In the evaluation of loss metrics within YOLOv8, various loss 
functions were employed, including segmentation loss (seg-
loss), bounding box loss (box-loss), class loss (cls-loss), and 
dfl-loss. Among these, the lowest loss value was observed for 
the class loss (cls-loss), recording at 0.18. This result signifies 
the model's accurate localization of PV installations. The 
bounding box loss (box-loss) and segmentation loss (seg-loss) 
exhibited slightly higher values of 0.36 and 0.46, respectively. 
Nonetheless, these values remained within an acceptable range 
and did not significantly impact the overall model performance 
(see Figure 6). 

(figure 11) compares manually annotated polygons. three 
examples from the test set with corresponding original images, 
prediction, simplified, and ground truth polygons are shown. 

Figure 7: evaluation metrics across range of tresholds. 

Throughout the training process, the model employs a range of 
confidence thresholds spanning from 0 to 1. For each 
individual threshold, the model computes both precision and 
recall metrics. Figure 7 illustrates that the model is capable of 
attaining high levels of precision and recall across a diverse 
range of confidence thresholds. 
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Figure 8: number of segmented PV modules across all provinces of the region. 

Figure 9: Sum of photovoltaic area by province. 

3.2 Geospatial analysis: 

Through the implementation of spatial intersection methods, 
we have effectively linked photovoltaic (PV) installations to 
their respective provinces, as demonstrated in Figure 8. 
Notably, EL KELAA DES SRAGHNA exhibits the most 
substantial count of PV installations, totaling 4763, followed 
by another notable count of 3996 in the Marrakech province. 
Conversely, Youssofia records the lowest count of 
installations at 374. The usage of PV installations differs 
across regions. In EL KELAA DES SRAGHNA, a majority of 
the PV installations are employed within the agricultural 
sector. On the other hand, in the Marrakech region, PV 

installations find application in both agricultural and 
residential settings. 

The polygons representing the PV installations were 
transformed to a specific local coordinate system 
(EPSG:26191). This was done to ensure precise calculations 
of both the area and perimeter for each installation. As 
depicted in Figure 9, the combined calculated areas for all 
installations across different provinces were visualized. As 
anticipated, EL KELAA DES SRAGHNA showcased the 
largest total area, measuring 0.34 square kilometers. Following 
closely, Marrakech exhibited an area sum of 0.29 square 
kilometers. The provinces of AlHouaz, Rehamna, and 
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Chichaoua demonstrated slightly similar values, with areas of 
0.19, 0.17, and 0.16 square kilometers respectively. 

Figure 10: Kernel distribution estimates of PV attributes. 

The distribution of estimated parameters is depicted in Figure 
10. Notably, perimeter values exhibited their highest density
at approximately 50 meters. Similarly, the densities of area
values fell within the range of 20 to 150 square meters, with
the peak occurring in this interval. The distribution of the
number of angles in photovoltaic (PV) installations displayed
an equitable spread between four and five angles. Furthermore,
confidence levels were recorded, with the maximum density
observed at approximately 0.9.

Figure 11: representation of outliers based on area and 
perimeter. 

3.3 Anomaly estimation 
Implementing the isolation forest algorithm, we identified 
outliers within our dataset by considering the attributes of area 
and perimeter. As shown in Figure 11, a scatter plot was 
generated to emphasize the data points constituting 5% as 
outliers. Evidently, the plot reveals the presence of two distinct 
clusters of outliers, both of which deviate from the overarching 
data pattern. The first cluster is characterized by notably 
smaller area and perimeter values, hovering around 10-20 
units. Meanwhile, the second cluster predominantly exhibits 
perimeter values exceeding 100 meters and area values 
predominantly exceeding 300 square meters. 

3.4 Photovoltaic density across LULC classes 

To identify the specific application domain of the identified 
photovoltaic (PV) installations (see figure 12). We performed 
sample raster values analysis, which allowed us to assign land 
use and land cover (LULC) classes from the dynamic World 
V1 dataset of 2022 to the segmented PV modules. In Figure 
14, we can observe the distribution of PV installations across 
various LULC classes. Notably, crop areas constitute the most 
dominant class, followed by built, trees, and barren land. In 
contrast, the least prominent classes comprise snow-covered 
areas, grassland, and water bodies. 

 4. Discussion 

Recent studies have shown a notable improvement in using 
computer vision to detect solar panels, J. Yu et al. (2018) 
demonstrated one of the most accurate frameworks to map 
solar panels in a country scale (USA), P. Li et al. (2021) 
worked on a city scale and investigated the characteristics of 
PV panel semantic-segmentation from the perspective of 
computer vision. his results reveal that the PV panel image 
data has several specific characteristics: high class-imbalance 
and non-concentrated distribution; homogeneous texture and 
heterogenous color features, based on his recommendations 
about Visual features of PV segmentation we successfully 
mapped PV modules with different visual features from (color, 
texture, and shape) as shown in figure 15. 

Various possibilities for enhancing this domain persist. 
Among the most trending fields is the prediction of potential 
energy production in a specific area, incorporating system-
specific variables and real-time energy generation forecasts. 
Future research will focus on evaluating the technical 
capacity for energy generation from the segmented surface 
area of solar PV. 
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Figure 12: Heatmap illustration for PV panels distribution. 

Figure 13: Segmentation results of yolov8(green) compared with ground truth(purple) and simplified polygon(red). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025 
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-317-2026 | © Author(s) 2026. CC BY 4.0 License. 326



Figure 14: PV panels density for each LULC class. 

 5. Conclusion
The solar photovoltaic (PV) manufacturing sector has
exhibited remarkable growth and has emerged as a
significant contributor to energy generation in numerous
countries, regardless of the rising costs of raw materials.
Nevertheless, the growth of large-scale residential and
agricultural solar PV installations has introduced fresh
challenges for various stakeholders, including market
regulators and power grid operators. A prevalent issue in
this context is the lack of comprehensive records detailing
the precise locations and capacities of rooftop solar PV
systems. To address this challenge, there is a mounting
interest in leveraging satellite high-resolution imagery to
automate the identification of solar PV system locations
and their associated capacities across expansive
geographical regions. This paper presents an innovative
approach for the precise georeferenced localization and
segmentation of solar panels. The outcomes of our study

demonstrate the efficacy of the Yolov8 segmentation 
technique in accurately delineating PV panels from 
satellite imagery.  

These results signify a promising avenue for the 
development of an automatic, precise, and scalable 
solution for obtaining critical information regarding PV 
installations, even in the presence of confusing 
background surroundings. In future research projects, we 
intend to refine our methodology by incorporating 
system-specific factors such as tilt angle, orientation, 
irradiance levels, and losses due to wiring. This refined 
approach aims to facilitate the estimation of potential 
energy output in a given area, further enhancing the utility 
and relevance of solar PV technology in energy planning 
and management. 

Figure 15: Different visual features of segmented PVs. 
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